User interface language: English | Español

HL Paper 3

This question will investigate power series, as an extension to the Binomial Theorem for negative and fractional indices.

A power series in x is defined as a function of the form  f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . where the a i R .

It can be considered as an infinite polynomial.

This is an example of a power series, but is only a finite power series, since only a finite number of the a i are non-zero.

We will now attempt to generalise further.

Suppose  ( 1 + x ) q , q Q  can be written as the power series  a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . .

Expand  ( 1 + x ) 5  using the Binomial Theorem.

[2]
a.

Consider the power series  1 x + x 2 x 3 + x 4 . . .

By considering the ratio of consecutive terms, explain why this series is equal to  ( 1 + x ) 1 and state the values of x for which this equality is true.

[4]
b.

Differentiate the equation obtained part (b) and hence, find the first four terms in a power series for  ( 1 + x ) 2 .

[2]
c.

Repeat this process to find the first four terms in a power series for ( 1 + x ) 3 .

[2]
d.

Hence, by recognising the pattern, deduce the first four terms in a power series for ( 1 + x ) n , n Z + .

[3]
e.

By substituting x = 0 , find the value of a 0 .

[1]
f.

By differentiating both sides of the expression and then substituting x = 0 , find the value of a 1 .

[2]
g.

Repeat this procedure to find a 2 and a 3 .

[4]
h.

Hence, write down the first four terms in what is called the Extended Binomial Theorem for  ( 1 + x ) q , q Q .

[1]
i.

Write down the power series for 1 1 + x 2 .

[2]
j.

Hence, using integration, find the power series for arctan x , giving the first four non-zero terms.

[4]
k.

Markscheme

1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5       M1A1

[2 marks]

a.

It is an infinite GP with  a = 1 , r = x       R1A1

S = 1 1 ( x ) = 1 1 + x = ( 1 + x ) 1       M1A1AG

[4 marks]

b.

( 1 + x ) 1 = 1 x + x 2 x 3 + x 4 . . .

1 ( 1 + x ) 2 = 1 + 2 x 3 x 2 + 4 x 3 . . .        A1

( 1 + x ) 2 = 1 2 x + 3 x 2 4 x 3 + . . .        A1

 

[2 marks]

c.

2 ( 1 + x ) 3 = 2 + 6 x 12 x 2 + 20 x 3 . . .       A1

( 1 + x ) 3 = 1 3 x + 6 x 2 10 x 3 . . .       A1

[2 marks]

d.

( 1 + x ) n = 1 n x + n ( n + 1 ) 2 ! x 2 n ( n + 1 ) ( n + 2 ) 3 ! x 3 . . .      A1A1A1

[3 marks]

e.

1 q = a 0 a 0 = 1       A1

[1 mark]

f.

q ( 1 + x ) q 1 = a 1 + 2 a 2 x + 3 a 3 x 2 + . . .        A1

a 1 = q        A1

[2 marks]

g.

q ( q 1 ) ( 1 + x ) q 2 = 1 × 2 a 2 + 2 × 3 a 3 x + . . .        A1

a 2 = q ( q 1 ) 2 !        A1

q ( q 1 ) ( q 2 ) ( 1 + x ) q 3 = 1 × 2 × 3 a 3 + . . .        A1

a 3 = q ( q 1 ) ( q 2 ) 3 !        A1

[4 marks]

h.

( 1 + x ) q = 1 + q x + q ( q 1 ) 2 ! x 2 + q ( q 1 ) ( q 2 ) 3 ! x 3 . . .      A1

[1 mark]

i.

1 1 + x 2 = 1 x 2 + x 4 x 6 + . . .     M1A1

[2 marks]

j.

arctan x + c = x x 3 3 + x 5 5 x 7 7 + . . .     M1A1

Putting  x = 0 c = 0         R1

So  arctan x = x x 3 3 + x 5 5 x 7 7 + . . .         A1

[4 marks]

k.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.
[N/A]
j.
[N/A]
k.



This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree 3 and 4.

 
The cubic equation x3+px2+qx+r=0, where p, q, r  , has roots α, β and γ.

Consider the equation x3-7x2+qx+1=0, where q.

Noah believes that if p23q then α, β and γ are all real.

Now consider polynomial equations of degree 4.

The equation x4+px3+qx2+rx+s=0, where p, q, r, s, has roots α, β, γ and δ.

In a similar way to the cubic equation, it can be shown that:

p=-(α+β+γ+δ)

q=αβ+αγ+αδ+βγ+βδ+γδ

r=-(αβγ+αβδ+αγδ+βγδ)

s=αβγδ.

The equation x4-9x3+24x2+22x-12=0, has one integer root.

By expanding x-αx-βx-γ show that:

p=-α+β+γ

q=αβ+βγ+γα

r=-αβγ.

[3]
a.

Show that p2-2q=α2+β2+γ2.

[3]
b.i.

Hence show that α-β2+β-γ2+γ-α2=2p2-6q.

[3]
b.ii.

Given that p2<3q, deduce that α, β and γ cannot all be real.

[2]
c.

Using the result from part (c), show that when q=17, this equation has at least one complex root.

[2]
d.

By varying the value of q in the equation x3-7x2+qx+1=0, determine the smallest positive integer value of q required to show that Noah is incorrect.

[2]
e.i.

Explain why the equation will have at least one real root for all values of q.

[1]
e.ii.

Find an expression for α2+β2+γ2+δ2 in terms of p and q.

[3]
f.i.

Hence state a condition in terms of p and q that would imply x4+px3+qx2+rx+s=0 has at least one complex root.

[1]
f.ii.

Use your result from part (f)(ii) to show that the equation x4-2x3+3x2-4x+5=0 has at least one complex root.

[1]
g.

State what the result in part (f)(ii) tells us when considering this equation x4-9x3+24x2+22x-12=0.

[1]
h.i.

Write down the integer root of this equation.

[1]
h.ii.

By writing x4-9x3+24x2+22x-12 as a product of one linear and one cubic factor, prove that the equation has at least one complex root.

[4]
h.iii.

Markscheme

attempt to expand x-αx-βx-γ            M1

=x2-α+βx+αβx-γ  OR  =x-αx2-β+γx+βγ         A1

x3+px2+qx+r=x3-α+β+γx2+αβ+βγ+γαx-αβγ         A1

comparing coefficients:

p=-α+β+γ         AG 

q=αβ+βγ+γα         AG 

r=-αβγ         AG 

 

Note: For candidates who do not include the AG lines award full marks.

 

[3 marks]

a.

p2-2q=α+β+γ2-2αβ+βγ+γα            (A1)

attempt to expand α+β+γ2            (M1)

=α2+β2+γ2+2αβ+βγ+γα-2αβ+βγ+γα or equivalent         A1

=α2+β2+γ2         AG 

 

Note: Accept equivalent working from RHS to LHS.

 

[3 marks]

b.i.

EITHER

attempt to expand α-β2+β-γ2+γ-α2            (M1)

=α2+β2-2αβ+β2+γ2-2βγ+γ2+α2-2γα         A1

=2α2+β2+γ2-2αβ+βγ+γα

=2p2-2q-2q or equivalent         A1

=2p2-6q         AG 


OR

attempt to write 2p2-6q in terms of α, β, γ            (M1)

=2p2-2q-2q

=2α2+β2+γ2-2αβ+βγ+γα         A1

=α2+β2-2αβ+β2+γ2-2βγ+γ2+α2-2γα         A1

=α-β2+β-γ2+γ-α2         AG 

 

Note: Accept equivalent working where LHS and RHS are expanded to identical expressions.

 

[3 marks]

b.ii.

p2<3q2p2-6q<0

α-β2+β-γ2+γ-α2<0         A1

if all roots were real α-β2+β-γ2+γ-α20         R1


Note:
Condone strict inequality in the R1 line.
Note: Do not award A0R1.


roots cannot all be real         AG 

 

[2 marks]

c.

p2=-72=49 and 3q=51         A1

so p2<3q the equation has at least one complex root         R1

 

Note: Allow equivalent comparisons; e.g. checking p2<6q

 

[2 marks]

d.

use of GDC (eg graphs or tables)         (M1)

q=12         A1

 

[2 marks]

e.i.

complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).

OR

a cubic curve always crosses the x-axis at at least one point.       R1

 

[1 mark]

e.ii.

attempt to expand α+β+γ+δ2           (M1)

α+β+γ+δ2=α2+β2+γ2+δ2+2αβ+αγ+αδ+βγ+βδ+γδ           (A1)

α2+β2+γ2+δ2=α+β+γ+δ2-2αβ+αγ+αδ+βγ+βδ+γδ

α2+β2+γ2+δ2=p2-2q          A1

 

[3 marks]

f.i.

p2<2q  OR  p2-2q<0          A1

 

Note: Allow FT on their result from part (f)(i).

 

[1 mark]

f.ii.

4<6  OR  22-2×3<0          R1

hence there is at least one complex root.         AG

 

Note: Allow FT from part (f)(ii) for the R mark provided numerical reasoning is seen.

 

[1 mark]

g.

p2>2q 81>2×24  (so) nothing can be deduced         R1

 

Note: Do not allow FT for the R mark.

 

[1 mark]

h.i.

-1          A1

 

[1 mark]

h.ii.

attempt to express as a product of a linear and cubic factor           M1

x+1x3-10x2+34x-12          A1A1

 

Note: Award A1 for each factor. Award at most A1A0 if not written as a product.

 

since for the cubic, p2<3q 100<102          R1

there is at least one complex root          AG

 

[4 marks]

h.iii.

Examiners report

The first part of this question proved to be very accessible, with the majority of candidates expanding their brackets as required, to find the coefficients p, q and r.

a.

The first part of this question was usually answered well, though presentation in the second part sometimes left a lot to be desired. The expression 2p2-2q-2q was expected to be seen more often, as a 'pivot' to reaching the required result. Algebra was often lengthy, but untidily so, sometimes leaving examiners to do some mental tidying up on behalf of the candidate.

b.i.
[N/A]
b.ii.

A good number of candidates recognised the reasoning required in this part of the question and were able to score both marks.

c.

Most candidates found applying this specific case to be very straightforward.

d.

Most candidates offered incorrect answers in the first part; despite their working suggested utilisation of the GDC, it was clear that many did not appreciate what the question was asking. The second part was usually answered well, with the idea of complex roots occurring in conjugate pairs being put to good use.

e.i.
[N/A]
e.ii.

Some very dubious algebra was seen here, and often no algebra at all. Despite this, a good number of candidates seemed to make the 'leap' to the correct expression p2-2q, perhaps fortuitously so in a number of cases.

f.i.
[N/A]
f.ii.

Of those finding p2-2q in part f, a surprising number of answers seen employed the test of checking whether p2<3q.

g.

Part i was usually not answered successfully, which may have been due to shortage of time. However, it was pleasing to see a number of candidates reach the end of the paper and successfully factorise the given quartic using a variety of methods. The final part required the p2<3q test. Though correct reasoning was sometimes seen, it was rare for this final mark to be gained.

h.i.
[N/A]
h.ii.
[N/A]
h.iii.



This question will explore connections between complex numbers and regular polygons.

The diagram below shows a sector of a circle of radius 1, with the angle subtended at the centre O being α , 0 < α < π 2 . A perpendicular is drawn from point P  to intersect the x -axis at Q . The tangent to the circle at P  intersects the x -axis at  R .

By considering the area of two triangles and the area of the sector show that cos α sin α < α < sin α cos α .

[5]
a.

Hence show that lim α 0 α sin α = 1 .

[2]
b.

Let  z n = 1 , z C , n N , n 5 . Working in modulus/argument form find the n solutions to this equation.

[8]
c.

Represent these n solutions on an Argand diagram. Let their positions be denoted by  P 0 , P 1 , P 2 , P n 1  placed in order in an anticlockwise direction round the circle, starting on the positive x -axis. Show the positions of  P 0 , P 1 , P 2 and  P n 1 .

[1]
d.

Show that the length of the line segment  P 0 P 1 is 2 sin π n .

[4]
e.

Hence, write down the total length of the perimeter of the regular n  sided polygon  P 0 P 1 P 2 P n 1 P 0 .

[1]
f.

Using part (b) find the limit of this perimeter as n .

[2]
g.

Find the total area of this n sided polygon.

[3]
h.

Using part (b) find the limit of this area as n .

[2]
i.

Markscheme

Area triangle  O P Q = 1 2 cos α sin α        A1

Area sector  = 1 2 1 2 α        A1

Area triangle  O P R = 1 2 1 tan α        A1

So looking at the diagram  1 2 cos α sin α < 1 2 α < 1 2 sin α cos α        M1

cos α sin α < α < sin α cos α        AG

[5 marks]

a.

Hence  cos α < α sin α < 1 cos α and as  α 0 , cos α 1   we have     M1R1

lim α 0 α sin α = 1      AG

[2 marks]

b.

( r c i s θ ) n = 1 c i s 0 r n c i s n θ = 1 c i s θ       M1A1M1A1

r n = 1 r = 1          n θ = 0 + 2 π k , k Z        A1A1

θ = 2 π k n , 0 k n 1        A1

z = c i s 2 π k n , 0 k n 1        A1

[8 marks]

c.

     A1

[1 mark]

d.

Bisecting the triangle  O P 0 P 1 to form two right angle triangles         M1

    

Length of  P 0 P 1 = 2 t where t = sin ( 2 π n 2 )       M1A1A1

So length is  2 sin π n       AG

[4 marks]

e.

Length of perimeter is 2 n sin π n        A1

[1 mark]

f.

2 n sin π n = 2 π n π sin π n 2 π as  n       M1A1

[2 marks]

g.

Area of  O P 0 P 1 = 1 2 1 × 1 sin 2 π n    so total area is  n 2 sin 2 π n .   M1A1A1

[3 marks]

h.

n 2 sin 2 π n = π n 2 π sin 2 π n π as  n       M1A1

[2 marks]

i.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.



In this question you will be exploring the strategies required to solve a system of linear differential equations.

 

Consider the system of linear differential equations of the form:

dxdt=x-y  and  dydt=ax+y,

where x, y, t+ and a is a parameter.

First consider the case where a=0.

Now consider the case where a=-1.

Now consider the case where a=-4.

From previous cases, we might conjecture that a solution to this differential equation is y=Feλt, λ and F is a constant.

By solving the differential equation dydt=y, show that y=Aet where A is a constant.

[3]
a.i.

Show that dxdt-x=-Aet.

[1]
a.ii.

Solve the differential equation in part (a)(ii) to find x as a function of t.

[4]
a.iii.

By differentiating dydt=-x+y with respect to t, show that d2ydt2=2dydt.

[3]
b.i.

By substituting Y=dydt, show that Y=Be2t where B is a constant.

[3]
b.ii.

Hence find y as a function of t.

[2]
b.iii.

Hence show that x=-B2e2t+C, where C is a constant.

[3]
b.iv.

Show that d2ydt2-2dydt-3y=0.

[3]
c.i.

Find the two values for λ that satisfy d2ydt2-2dydt-3y=0.

[4]
c.ii.

Let the two values found in part (c)(ii) be λ1 and λ2.

Verify that y=Feλ1t+Geλ2t is a solution to the differential equation in (c)(i),where G is a constant.

[4]
c.iii.

Markscheme

METHOD 1

dydt=y

dyy=dt               (M1)

lny=t+c  OR  lny=t+c             A1A1


Note: Award A1 for lny and A1 for t and c.


y=Aet             AG

 

METHOD 2

rearranging to dydt-y=0 AND multiplying by integrating factor e-t               M1

ye-t=A             A1A1

y=Aet             AG

 

[3 marks]

a.i.

substituting y=Aet into differential equation in x               M1

dxdt=x-Aet

dxdt-x=-Aet             AG

 

[1 mark]

a.ii.

integrating factor (IF) is e-1dt               (M1)

=e-t               (A1)

e-tdxdt-xe-t=-A

xe-t=-At+D               (A1)

x=-At+Det               A1


Note: The first constant must be A, and the second can be any constant for the final A1 to be awarded. Accept a change of constant applied at the end.

 

[4 marks]

a.iii.

d2ydt2=-dxdt+dydt               A1


EITHER

=-x+y+dydt               (M1)

=dydt+dydt               A1


OR

=-x+y+-x+y               (M1)

=2-x+y               A1


THEN

=2dydt               AG


[3 marks]

b.i.

dYdt=2Y               A1

dYY=2dt               M1

lnY=2t+c  OR  lnY=2t+c               A1

Y=Be2t               AG

 

[3 marks]

b.ii.

dydt=Be2t

y=Be2tdt              M1

y=B2e2t+C              A1


Note:
The first constant must be B, and the second can be any constant for the final A1 to be awarded. Accept a change of constant applied at the end.

 

[2 marks]

b.iii.

METHOD 1

substituting dydt=Be2t and their (iii) into dydt=-x+y              M1(M1)

Be2t=-x+B2e2t+C              A1

x=-B2e2t+C              AG

Note: Follow through from incorrect part (iii) cannot be awarded if it does not lead to the AG.


METHOD 2

dxdt=x-B2e2t-C

dxdt-x=-B2e2t-C

dxe-tdt=-B2et-Ce-t              M1

xe-t=-B2et-Ce-tdt

xe-t=-B2et-Ce-t+D              A1

x=-B2e2t+C+Det

dydt=-x+yBe2t=B2e2t-C-Det+B2e2t+CD=0              M1

x=-B2e2t+C              AG

 

[3 marks]

b.iv.

dydt=-4x+y

d2ydt2=-4dxdt+dydt seen anywhere              M1

 

METHOD 1

d2ydt2=-4x-y+dydt

attempt to eliminate x              M1

=-414y-dydt-y+dydt

=2dydt+3y              A1

d2ydt2-2dydt-3y=0              AG

 

METHOD 2

rewriting LHS in terms of x and y              M1

d2ydt2-2dydt-3y=-8x+5y-2-4x+y-3y              A1

=0              AG

 

[3 marks]

c.i.

dydt=Fλeλt, d2ydt2=Fλ2eλt               (A1)

Fλ2eλt-2Fλeλt-3Feλt=0               (M1)

λ2-2λ-3=0  (since eλt0)              A1

λ1 and λ2 are 3 and -1 (either order)              A1

 

[4 marks]

c.ii.

METHOD 1

y=Fe3t+Ge-t

dydt=3Fe3t-Ge-t, d2ydt2=9Fe3t-Ge-t                      (A1)(A1)

d2ydt2-2dydt-3y=9Fe3t+Ge-t-23Fe3t-Ge-t-3Fe3t-Ge-t              M1

=9Fe3t+Ge-t-6Fe3t+2Ge-t-3Fe3t-3Ge-t              A1

=0              AG

 

METHOD 2

y=Feλ1t+Geλ2t

dydt=Fλ1eλ1t+Gλ2eλ2t, d2ydt2=Fλ12eλ1t+Gλ22eλ2t                      (A1)(A1)

d2ydt2-2dydt-3y=Fλ12eλ1t+Gλ22eλ2t-2Fλ1eλ1t+Gλ2eλ2t-3Feλ1t+Geλ2t              M1

=Feλ1tλ2-2λ-3+Geλ2tλ2-2λ-3              A1

=0              AG

 

[4 marks]

c.iii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
b.iv.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.



A Gaussian integer is a complex number, z, such that z=a+bi where a,b. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.

Consider two Gaussian integers, α=3+4i and β=1-2i, such that γ=αβ for some Gaussian integer γ.

Now consider two Gaussian integers, α=3+4i and γ=11+2i.

The norm of a complex number z, denoted by Nz, is defined by Nz=z2. For example, if z=2+3i then N2+3i=22+32=13.

A Gaussian prime is a Gaussian integer, z, that cannot be expressed in the form z=αβ where α,β are Gaussian integers with Nα,Nβ>1.

The positive integer 2 is a prime number, however it is not a Gaussian prime.

Let α,β be Gaussian integers.

The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.

Find γ.

[2]
a.

Determine whether γα is a Gaussian integer.

[3]
b.

On an Argand diagram, plot and label all Gaussian integers that have a norm less than 3.

[2]
c.

Given that α=a+bi where a,b, show that Nα=a2+b2.

[1]
d.

By expressing the positive integer n=c2+d2 as a product of two Gaussian integers each of norm c2+d2, show that n is not a Gaussian prime.

[3]
e.

Verify that 2 is not a Gaussian prime.

[2]
f.

Write down another prime number of the form c2+d2 that is not a Gaussian prime and express it as a product of two Gaussian integers.

[2]
g.

Show that Nαβ=NαNβ.

[6]
h.

Hence show that 1+4i is a Gaussian prime.

[3]
i.

Use proof by contradiction to prove that a prime number, p, that is not of the form a2+b2 is a Gaussian prime.

[6]
j.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

3+4i1-2i=11-2i          (M1)A1 

 

[2 marks]

a.

γα=4125-3825i          (M1)A1 

(Since Reγα=4125 and/or Imγα=-3825 are not integers)

γα is not a Gaussian integer         R1

 

Note: Award R1 for correct conclusion from their answer.

 

[3 marks]

b.

±1,±i,0 plotted and labelled        A1

1±i,-1±i plotted and labelled        A1

 

Note: Award A1A0 if extra points to the above are plotted and labelled.

  

[2 marks]

c.

z=a2+b2  (and as Nz=z2)       A1

then N(α)=a2+b2        AG

   

[1 mark]

d.

c2+d2=c+dic-di       A1

and Nc+di=Nc-di=c2+d2       R1

Nc+di,Nc-di>1 (since c,d are positive)       R1

so c2+d2 is not a Gaussian prime, by definition        AG

   

[3 marks]

e.

2=12+12=1+i1-i       (A1)

N1+i=N1-i=2        A1

so 2 is not a Gaussian prime       AG

   

[2 marks]

f.

For example, 5=12+22=1+2i1-2i       (M1)A1

   

[2 marks]

g.

METHOD 1

Let α=m+ni and β=p+qi

LHS:

αβ=mp-nq+mq+npi        M1

Nαβ=mp-nq2+mq+np2       A1

mp2-2mnpq+nq2+mq2+2mnpq+np2       A1

mp2+nq2+mq2+np2       A1

RHS:

NαNβ=m2+n2p2+q2        M1

mp2+mq2+np2+nq2       A1

LHS = RHS and so Nαβ=NαNβ       AG

 

METHOD 2

Let α=m+ni and β=p+qi

LHS

Nαβ=m2+n2p2+q2        M1

=m+nim-nip+qip-qi       A1

=m+nip+qim-nip-qi

=mp-nq+mq+npimp-nq-mq+npi        M1A1

=mp-nq2+mq+np2       A1

N=mp-nq+mq+npi       A1

=NαNβ (= RHS)       AG

   

[6 marks]

h.

N1+4i=17 which is a prime (in )        R1

if 1+4i=αβ then 17=Nαβ=NαNβ        R1

we cannot have Nα,Nβ>1        R1

 

Note: Award R1 for stating that 1+4i is not the product of Gaussian integers of smaller norm because no such norms divide 17

 

so 1+4i is a Gaussian prime        AG

   

[3 marks]

i.

Assume p is not a Gaussian prime

p=αβ where α,β are Gaussian integers and Nα,Nβ>1         M1

Np=NαNβ         M1

p2=NαNβ        A1

It cannot be Nα=1,Nβ=p2 from definition of Gaussian prime        R1

hence Nα=p,Nβ=p        R1

If α=a+bi then Nα=a2+b2=p which is a contradiction        R1

hence a prime number, p, that is not of the form a2+b2 is a Gaussian prime        AG

 

[6 marks]

j.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.
[N/A]
i.
[N/A]
j.



In this question you will explore some of the properties of special functions f and g and their relationship with the trigonometric functions, sine and cosine.


Functions f and g are defined as fz=ez+e-z2 and gz=ez-e-z2, where z.

Consider t and u, such that t, u.

Using eiu=cosu+isinu, find expressions, in terms of sinu and cosu, for

The functions cosx and sinx are known as circular functions as the general point (cosθ, sinθ) defines points on the unit circle with equation x2+y2=1.

The functions f(x) and g(x) are known as hyperbolic functions, as the general point ( f(θ), g(θ) ) defines points on a curve known as a hyperbola with equation x2-y2=1. This hyperbola has two asymptotes.

Verify that u=ft satisfies the differential equation d2udt2=u.

[2]
a.

Show that ft2+gt2=f2t.

[3]
b.

fiu.

[3]
c.i.

giu.

[2]
c.ii.

Hence find, and simplify, an expression for fiu2+giu2.

[2]
d.

Show that ft2-gt2=fiu2-giu2.

[4]
e.

Sketch the graph of x2-y2=1, stating the coordinates of any axis intercepts and the equation of each asymptote.

[4]
f.

The hyperbola with equation x2-y2=1 can be rotated to coincide with the curve defined by xy=k, k.

Find the possible values of k.

[5]
g.

Markscheme

f't=et-e-t2                       A1

f''t=et+e-t2                       A1

=ft                       AG


[2 marks]

a.

METHOD 1

ft2+gt2

substituting f and g                      M1

=et+e-t2+et-e-t24

=et2+2+e-t2+et2-2+e-t24                      (M1)

=et2+e-t22  =e2t+e-2t2                      A1

=f2t                      AG

 

METHOD 2

f2t=e2t+e-2t2

=et2+e-t22                      M1

=et+e-t2+et-e-t24                     M1A1

=ft2+gt2                      AG


Note: Accept combinations of METHODS 1 & 2 that meet at equivalent expressions.


[3 marks]

b.

substituting eiu=cosu+isinu into the expression for f                      (M1)

obtaining e-iu=cosu-isinu                      (A1)

fiu=cosu+isinu+cosu-isinu2


Note: The M1 can be awarded for the use of sine and cosine being odd and even respectively.


=2cosu2

=cosu                      A1


[3 marks]

c.i.

giu=cosu+isinu-cosu+isinu2

substituting and attempt to simplify                      (M1)

=2isinu2

=isinu                      A1


[2 marks]

c.ii.

METHOD 1

fiu2+giu2

substituting expressions found in part (c)                     (M1)

=cos2u-sin2u  =cos2u                      A1

 

METHOD 2

f2iu=e2iu+e-2iu2

=cos2u+isin2u+cos2u-isin2u2                     M1

=cos2u                      A1


Note: Accept equivalent final answers that have been simplified removing all imaginary parts eg 2cos2u1etc


[2 marks]

d.

ft2-gt2=et+e-t2-et-e-t24                      M1

=e2t+e-2t+2-e2t+e-2t-24                      A1

=44=1                      A1


Note: Award A1 for a value of 1 obtained from either LHS or RHS of given expression.


fiu2-giu2=cos2u+sin2u                      M1

=1  (hence ft2-gt2=fiu2-giu2)                      AG


Note: Award full marks for showing that fz2-gz2=1, z.


[4 marks]

e.

        A1A1A1A1


Note: Award A1 for correct curves in the upper quadrants, A1 for correct curves in the lower quadrants, A1 for correct x-intercepts of (1, 0) and (1, 0) (condone x=1 and 1), A1 for y=x and y=x.



[4 marks]

f.

attempt to rotate by 45° in either direction               (M1)


Note: Evidence of an attempt to relate to a sketch of xy=k would be sufficient for this (M1).


attempting to rotate a particular point, eg (1, 0)               (M1)

(1, 0) rotates to 12,±12 (or similar)               (A1)

hence k=±12             A1A1


[5 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.



This question asks you to investigate and prove a geometric property involving the roots of the equation zn=1 where z for integers n, where n2.


The roots of the equation zn=1 where z are 1, ω, ω2, , ωn-1, where ω=e2πin. Each root can be represented by a point P0, P1, P2, , Pn-1, respectively, on an Argand diagram.

For example, the roots of the equation z2=1 where z are 1 and ω. On an Argand diagram, the root 1 can be represented by a point P0 and the root ω can be represented by a point P1.

Consider the case where n=3.

The roots of the equation z3=1 where z are 1, ω and ω2. On the following Argand diagram, the points P0, P1 and P2 lie on a circle of radius 1 unit with centre O(0, 0).

Line segments [P0P1] and [P0P2] are added to the Argand diagram in part (a) and are shown on the following Argand diagram.

P0P1is the length of [P0P1] and P0P2 is the length of [P0P2].

Consider the case where n=4.

The roots of the equation z4=1 where z are 1, ω, ω2 and ω3.

On the following Argand diagram, the points P0, P1, P2 and P3 lie on a circle of radius 1 unit with centre O(0, 0). [P0P1], [P0P2] and [P0P3] are line segments.

For the case where n=5, the equation z5=1 where z has roots 1, ω, ω2, ω3 and ω4.

It can be shown that P0P1×P0P2×P0P3×P0P4=5.

Now consider the general case for integer values of n, where n2.

The roots of the equation zn=1 where z are 1, ω, ω2, , ωn-1. On an Argand diagram, these roots can be represented by the points P0, P1, P2, , Pn-1 respectively where [P0P1], [P0P2], , [P0Pn-1] are line segments. The roots lie on a circle of radius 1 unit with centre O(0, 0).

P0P1 can be expressed as |1-ω|.

Consider zn-1=(z-1)(zn-1+zn-2+  +z+1) where z.

Show that (ω-1)(ω2+ω+1)=ω3-1.

[2]
a.i.

Hence, deduce that ω2+ω+1=0.

[2]
a.ii.

Show that P0P1×P0P2=3.

[3]
b.

By factorizing z4-1, or otherwise, deduce that ω3+ω2+ω+1=0.

[2]
c.

Show that P0P1×P0P2×P0P3=4.

[4]
d.

Suggest a value for P0P1×P0P2×  ×P0Pn-1.

[1]
e.

Write down expressions for P0P2 and P0P3 in terms of ω.

[2]
f.i.

Hence, write down an expression for P0Pn-1 in terms of n and ω.

[1]
f.ii.

Express zn-1+ zn-2+  +z+1 as a product of linear factors over the set .

[3]
g.i.

Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e).

[4]
g.ii.

Markscheme

METHOD 1

attempts to expand (ω-1)(ω2+ω+1)            (M1)

=ω3+ω2+ω-ω2-ω-1           A1

=ω3-1           AG

 

METHOD 2

attempts polynomial division on ω3-1ω-1            M1

=ω2+ω+1           A1

so (ω-1)(ω2+ω+1)=ω3-1           AG

 

Note: In part (a), award marks as appropriate where ω has been converted into Cartesian, modulus-argument (polar) or Euler form.

 

[2 marks]

a.i.

(since ω is a root of z3=1)ω3-1=0           R1

and ω1           R1

ω2+ω+1=0           AG

 

Note: In part (a), award marks as appropriate where ω has been converted into Cartesian, modulus-argument (polar) or Euler form.

  

[2 marks]

a.ii.

METHOD 1

attempts to find either  P0P1 or P0P2             (M1)

accept any valid method

e.g.  2sinπ3,  12+12-2cos2π3,  1sinπ6=P0P1sin2π3from either ΔOP0P1 or ΔOP0P2

e.g. use of Pythagoras’ theorem

e.g. 1-ei2π3,  1--12+32i by calculating the distance between 2 points

P0P1=3           A1

P0P2=3           A1


Note:
Award a maximum of M1A1A0 for any decimal approximation seen in the calculation of either P0P1 or P0P2 or both.


so P0P1×P0P2=3            AG

 

METHOD 2

attempts to find P0P1×P0P2=1-ω1-ω2             (M1)

P0P1×P0P2=ω3-ω2-ω+1           A1

=1-ω2+ω+1+2  and since ω2+ω+1=0           R1

so P0P1×P0P2=3            AG

 

[3 marks]

b.

METHOD 1

z41=z1z3+z2+z+1           A1

(ω is a root hence) ω4-1=0 and ω1           R1

ω3+ω2+ω+1=0            AG


Note: Condone the use of ω throughout.

 

METHOD 2

considers the sum of roots of z4-1=0             (M1)

the sum of roots is zero (there is no z3 term)         A1

ω3+ω2+ω+1=0            AG

 

METHOD 3

substitutes for ω             (M1)

e.g. LHS=ei3π2+eπi+eiπ2+1

=-i-1+i+1         A1


Note: This can be demonstrated geometrically or by using vectors. Accept Cartesian or modulus-argument (polar) form.

ω3+ω2+ω+1=0            AG

 

METHOD 4

ω3+ω2+ω+1=ω4-1ω-1         A1

=0ω-1=0 as ω1           R1

ω3+ω2+ω+1=0            AG

 

[2 marks]

c.

METHOD 1

P0P2=2           A1

attempts to find either P0P1 or P0P3             (M1)

 

Note: For example P0P1=1-i and P0P3=1+i.
         Various geometric and trigonometric approaches can be used by candidates.

 

P0P1=2, P0P3=2           A1A1


Note: Award a maximum of A1M1A1A0 if labels such as P0P1 are not clearly shown.
         Award full marks if the lengths are shown on a clearly labelled diagram.
         Award a maximum of A1M1A1A0 for any decimal approximation seen in the calculation of either P0P1 or P0P3 or both.


P0P1×P0P2×P0P3=4            AG

 

METHOD 2

attempts to find P0P1×P0P2×P0P3=1-ω1-ω21-ω3            M1

P0P1×P0P2×P0P3=-ω6+ω5+ω4-ω2-ω+1         A1

=--1+ω5+1--1-ω+1  since ω6=ω2=-1 and ω4=1        A1

=ω5-ω+4 and since ω5=ω           R1

so P0P1×P0P2×P0P3=4            AG

 

METHOD 3

P0P2=2           A1

attempts to find P0P1×P0P3=1-ω1-ω3            M1

P0P1×P0P3=ω4-ω3-ω+1         A1

=2--ω-ω  since ω4=1 and ω3=-ω               R1     

so P0P1×P0P2×P0P3=4            AG

 

[4 marks]

d.

P0P1×P0P2×  ×P0Pn-1=n         A1

 

[1 mark]

e.

P0P2=1-ω2, P0P3=1-ω3         A1A1

 

[2 marks]

f.i.

P0Pn-1=1-ωn-1         A1A1

 
Note: Accept 1-ω from symmetry.


[1 mark]

f.ii.

zn-1=z-1zn-1+ zn-2+  +z+1

considers the equation zn-1+ zn-2+  +z+1=0         (M1)

the roots are ω, ω2,  , ωn-1         (A1)

so z-ωz-ω2z-ωn-1         A1


[3 marks]

g.i.

METHOD 1

substitutes z=1into z-ωz-ω2z-ωn-1zn-1+ zn-2+  +z+1           M1

1-ω1-ω21-ωn-1=n         (A1)

takes modulus of both sides           M1

1-ω1-ω21-ωn-1=n

1-ω1-ω21-ωn-1=n                 A1

so P0P1×P0P2××P0Pn-1=n                 AG

 

Note: Award a maximum of M1A1FTM1A0 from part (e).

 

METHOD 2

1-ω,1-ω2,,1-ωn-1 are the roots of 1-vn-1+1-vn-2++1-v+1=0           M1

coefficient of vn-1 is -1n-1 and the coefficient of 1 is n                 A1

product of the roots is -1n-1n-1n-1=n                 A1

1-ω1-ω21-ωn-1=n                 A1

so P0P1×P0P2××P0Pn-1=n                 AG


[4 marks]

g.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.
[N/A]
g.i.
[N/A]
g.ii.



This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.


A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.

For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are 1, 3, 6, 10 and 15.

The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.

For an r-sided regular polygon, where r+, r3, the nth polygonal number Prn is given by

Prn=r-2n2-r-4n2, where n+.

Hence, for square numbers, P4n=4-2n2-4-4n2=n2.

The nth pentagonal number can be represented by the arithmetic series

P5n=1+4+7++3n-2.

For triangular numbers, verify that P3n=nn+12.

[2]
a.i.

The number 351 is a triangular number. Determine which one it is.

[2]
a.ii.

Show that P3n+P3n+1n+12.

[2]
b.i.

State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.

[1]
b.ii.

For n=4, sketch a diagram clearly showing your answer to part (b)(ii).

[1]
b.iii.

Show that 8P3n+1 is the square of an odd number for all n+.

[3]
c.

Hence show that P5n=n3n-12 for n+.

[3]
d.

By using a suitable table of values or otherwise, determine the smallest positive integer, greater than 1, that is both a triangular number and a pentagonal number.

[5]
e.

A polygonal number, Prn, can be represented by the series

Σm=1n1+m-1r-2 where r+, r3.

Use mathematical induction to prove that Prn=r-2n2-r-4n2 where n+.

[8]
f.

Markscheme

P3n=3-2n2-3-4n2  OR  P3n=n2--n2        A1

P3n=n2+n2        A1

 

Note: Award A0A1 if P3n=n2+n2 only is seen.

Do not award any marks for numerical verification.

 

so for triangular numbers, P3n=nn+12        AG

 

[2 marks]

a.i.

METHOD 1

uses a table of values to find a positive integer that satisfies P3n=351        (M1)

for example, a list showing at least 3 consecutive terms 325, 351, 378

 

Note: Award (M1) for use of a GDC’s numerical solve or graph feature.

 

n=26  (26th triangular number)        A1

 

Note: Award A0 for n=27,26. Award A0 if additional solutions besides n=26 are given.

 

METHOD 2

attempts to solve nn+12=351 n2+n-702=0 for n        (M1)

n=-1±12-41-7022  OR  n-26n+27=0

n=26  (26th triangular number)        A1

 

Note: Award A0 for n=27,26. Award A0 if additional solutions besides n=26 are given.

 

[2 marks]

a.ii.

attempts to form an expression for P3n+P3n+1 in terms of n        M1

 

EITHER

P3n+P3n+1nn+12+n+1n+22

n+12n+22 2n+1n+12         A1

 

OR

P3n+P3n+1n22+n2+n+122+n+12

n2+n2+n2+2n+1+n+12  n2+2n+1         A1

 

THEN

n+12         AG

 

[2 marks]

b.i.

the sum of the nth and n+1th triangular numbers

is the n+1th square number         A1

 

[1 mark]

b.ii.

      A1

 

Note: Accept equivalent single diagrams, such as the one above, where the 4th and 5th triangular numbers and the 5th square number are clearly shown.
Award A1 for a diagram that show P34 (a triangle with 10 dots) and P35 (a triangle with 15 dots) and P45 (a square with 25 dots).

 

[1 mark]

b.iii.

METHOD 1

8P3n+1=8nn+12+1 =4nn+1+1          A1

attempts to expand their expression for 8P3n+1          (M1)

=4n2+4n+1

=2n+12          A1

and 2n+1 is odd          AG

 

METHOD 2

8P3n+1=8n+12-P3n+1+1=8n+12-n+1n+22+1  A1

attempts to expand their expression for 8P3n+1          (M1)

8n2+2n+1-4n2+3n+2+1 =4n2+4n+1

=2n+12          A1

and 2n+1 is odd          AG

 

Method 3

8P3n+1=8nn+12+1 =An+B2 (where A,B+)          A1

attempts to expand their expression for 8P3n+1          (M1)

4n2+4n+1 =A2n2+2ABn+B2

now equates coefficients and obtains B=1 and A=2

=2n+12          A1

and 2n+1 is odd          AG

 

[3 marks]

c.

EITHER

u1=1 and d=3          (A1)

substitutes their u1 and their d into P5n=n22u1+n-1d          M1

P5n=n22+3n-1 =n22+3n-3          A1

 

OR

u1=1 and un=3n-2          (A1)

substitutes their u1 and their un into P5n=n2u1+un          M1

P5n=n21+3n-2          A1

 

OR

P5n=31-2+32-2+33-2+3n-2

P5n=31+32+33++3n-2n =31+2+3++n-2n        (A1)

substitutes nn+12 into their expression for P5n          M1

P5n=3nn+12-2n

P5n=n23n+1-4          A1

 

OR

attempts to find the arithmetic mean of n terms          (M1)

=1+3n-22          A1

multiplies the above expression by the number of terms n

P5n=n21+3n-2          A1

 

THEN

so P5n=n3n-12          AG

 

[3 marks]

d.

METHOD 1

forms a table of P3n values that includes some values for n>5         (M1)

forms a table of P5m values that includes some values for m>5         (M1)

 

Note: Award (M1) if at least one P3n value is correct. Award (M1) if at least one P5m value is correct. Accept as above for n2+n values and 3m2-m values.

 

n=20 for triangular numbers          (A1)

m=12 for pentagonal numbers          (A1)

 

Note: Award (A1) if n=20 is seen in or out of a table. Award (A1) if m=12 is seen in or out of a table. Condone the use of the same parameter for triangular numbers and pentagonal numbers, for example, n=20 for triangular numbers and n=12 for pentagonal numbers.

 

210 (is a triangular number and a pentagonal number)          A1

 

Note: Award all five marks for 210 seen anywhere with or without working shown.

 

METHOD 2

EITHER

attempts to express P3n=P5m as a quadratic in n         (M1)

n2+n+m-3m2=0 (or equivalent)

attempts to solve their quadratic in n         (M1)

n=-1±12m2-4m+12=-1±12-4m-3m22

 

OR

attempts to express P3n=P5m as a quadratic in m         (M1)

3m2-m-n2+n=0 (or equivalent)

attempts to solve their quadratic in m         (M1)

m=1±12n2-12n+16=1±-12+12n2+n6

 

THEN

n=20 for triangular numbers          (A1)

m=12 for pentagonal numbers          (A1)

210 (is a triangular number and a pentagonal number)          A1

 

METHOD 3

nn+12=m3m-12

let n=m+k n>m and so 3m2-m=m+km+k+1        M1

2m2-2k+1m-k2+k=0          A1

attempts to find the discriminant of their quadratic

and recognises that this must be a perfect square        M1

Δ=4k+12+8k2+k

N2=4k+12+8k2+k =4k+13k+1

determines that k=8 leading to 2m2-18m-72=0m=-3,12 and so m=12          A1

210 (is a triangular number and a pentagonal number)          A1

 

 

METHOD 4

nn+12=m3m-12

let m=n-k m<n and so n2+n=n-k3n-k-1       M1

2n2-23k+1n+3k2+k=0          A1

attempts to find the discriminant of their quadratic

and recognises that this must be a perfect square        M1

Δ=43k+12-83k2+k

N2=43k+12-83k2+k =4k+13k+1

determines that k=8 leading to 2n2-50n+200=0n=5,20 and so n=20          A1

210 (is a triangular number and a pentagonal number)          A1

 

[5 marks]

e.

Note: Award a maximum of R1M0M0A1M1A1A1R0 for a ‘correct’ proof using n and n+1.

 

consider n=1: Pr1=1+1-1r-2=1 and Pr1=r-212-r-412=1

so true for n=1              R1 

 

Note: Accept Pr1=1 and Pr1=r-212-r-412=1.
Do not accept one-sided considerations such as 'Pr1=1 and so true for n=1'.
Subsequent marks after this R1 are independent of this mark can be awarded.

 

Assume true for n=k, ie. Prk=r-2k2-r-4k2          M1

 

Note: Award M0 for statements such as “let n=k ”. The assumption of truth must be clear.
Subsequent marks after this M1 are independent of this mark and can be awarded.

 

Consider n=k+1:

(Prk+1 can be represented by the sum

Σm=1k+11+m-1r-2=Σm=1k1+m-1r-2+1+kr-2 and so

Prk+1=r-2k2-r-4k2+1+kr-2  Prk+1=Prk+1+kr-2         M1

=r-2k2-r-4k+2+2kr-22         A1

 =r-2k2+2k-r-4k+22

=r-2k2+2k+1-r-2-r-4k+22         M1

=r-2k+12-r-4k-r-42          (A1)

 =r-2k+12-r-4k+12         A1

hence true for n=1 and n=k true n=k+1 true         R1

therefore true for all n+

 

Note: Only award the final R1 if the first five marks have been awarded. Award marks as appropriate for solutions that expand both the LHS and (given) RHS of the equation.

 

[8 marks]

f.

Examiners report

Part (a) (i) was generally well done. Unfortunately, some candidates adopted numerical verification. Part (a) (ii) was generally well done with the majority of successful candidates using their GDC judiciously and disregarding = −27 as a possible solution. A few candidates interpreted the question as needing to deal with P3(351).

Although part (b) (i) was generally well done, a significant number of candidates laboured unnecessarily to show the required result. Many candidates set their LHS to equal the RHS throughout the solution. Part (b) (ii) was generally not well done with many candidates unable to articulate clearly in words and symbols what the given identity shows for the sum of two consecutive triangular numbers. In part (b) (iii), most candidates were unable to produce a clear diagram illustrating the identity stated in part (b) (i). 

Part (c) was reasonably well done. Most candidates were able to show algebraically that 8P3(n)+1=4n2+4n+1. A good number of candidates were then able to express 4n2+4n+1 as (2n+1)2 and conclude that (2n+1) is odd. Rather than making the connection that 4n2+4n+1 is a perfect square, many candidates attempted instead to analyse the parity of either 4n(n+1)+1 or 4n2+4n+1. As with part (b) (i), many candidates set their LHS to equal the RHS throughout the solution. A number of candidates unfortunately adopted numerical verification.

Part (d) was not answered as well as anticipated with many candidates not understanding what was
required. Instead of using the given arithmetic series to show that P5(n)=n(3n-1)2, a large number of
candidates used P5(n)=(5-2)n2-(5-4)n2 . Unfortunately, a number of candidates adopted numerical verification.

In part (e), the overwhelming majority of candidates who successfully determined that 210 is the smallest positive integer greater than 1 that is both triangular and pentagonal used a table of values. Unfortunately, a large proportion of these candidates seemingly spent quite a few minutes listing the first 20 triangular numbers and the first 12 pentagonal numbers. And it can be surmised that a number of these candidates constructed their table of values either without the use of a GDC or with the arithmetic functionality of a GDC rather than with a GDC's table of values facility. Candidates should be aware that a relevant excerpt from a table of values is sufficient evidence of correct working. A number of candidates started constructing a table of values but stopped before identifying 210. Disappointingly, a significant number of candidates attempted to solve P3(n)=P5(n) for n.

Part (f) proved beyond the reach of most with only a small number of candidates successfully proving the given result. A significant number of candidates were unable to show that the result is true for n=1. A number of candidates established the validity of the base case for the RHS only while a number of other candidates attempted to prove the base case for r = 3. A large number of candidates did not state the inductive step correctly with the assumption of truth not clear. A number of candidates then either attempted to work backwards from the given result or misinterpreted the question and attempted to prove the result stated in the question stem rather than the result stated in the question. Some candidates who were awarded the first answer mark when considering the n=k+1 case were unable to complete the square or equivalent simplification correctly. Disappointingly, a significant number listed the steps involved in an induction proof without engaging in the actual proof.

a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.



This question asks you to explore cubic polynomials of the form x-rx2-2ax+a2+b2 for x and corresponding cubic equations with one real root and two complex roots of the form (z-r)(z2-2az+a2+b2)=0 for z.

 

In parts (a), (b) and (c), let r=1, a=4 and b=1.

Consider the equation z-1z2-8z+17=0 for z.

Consider the function fx=x-1x2-8x+17 for x.

Consider the function gx=x-rx2-2ax+a2+b2 for x where r, a and b, b>0.

The equation z-rz2-2az+a2+b2=0 for z has roots r and a±bi where r, a and b, b>0.

On the Cartesian plane, the points C1a, g'a and C2a, -g'a represent the real and imaginary parts of the complex roots of the equation z-rz2-2az+a2+b2=0.


The following diagram shows a particular curve of the form y=x-rx2-2ax+a2+16 and the tangent to the curve at the point Aa, 80. The curve and the tangent both intersect the x-axis at the point R-2, 0. The points C1 and C2 are also shown.

Consider the curve y=(x-r)(x2-2ax+a2+b2) for ar, b>0. The points A(a, g(a)) and R(r, 0) are as defined in part (d)(ii). The curve has a point of inflexion at point P.

Consider the special case where a=r and b>0.

Given that 1 and 4+i are roots of the equation, write down the third root.

[1]
a.i.

Verify that the mean of the two complex roots is 4.

[1]
a.ii.

Show that the line y=x-1 is tangent to the curve y=fx at the point A4, 3.

[4]
b.

Sketch the curve y=f(x) and the tangent to the curve at point A, clearly showing where the tangent crosses the x-axis.

[2]
c.

Show that g'x=2x-rx-a+x2-2ax+a2+b2.

[2]
d.i.

Hence, or otherwise, prove that the tangent to the curve y=gx at the point Aa, ga intersects the x-axis at the point Rr, 0.

[6]
d.ii.

Deduce from part (d)(i) that the complex roots of the equation z-rz2-2az+a2+b2=0 can be expressed as a±ig'a.

[1]
e.

Use this diagram to determine the roots of the corresponding equation of the form z-rz2-2az+a2+16=0 for z.

[4]
f.i.

State the coordinates of C2.

[1]
f.ii.

Show that the x-coordinate of P is 132a+r.

You are not required to demonstrate a change in concavity.

[2]
g.i.

Hence describe numerically the horizontal position of point P relative to the horizontal positions of the points R and A.

[1]
g.ii.

Sketch the curve y=x-rx2-2ax+a2+b2 for a=r=1 and b=2.

[2]
h.i.

For a=r and b>0, state in terms of r, the coordinates of points P and A.

[1]
h.ii.

Markscheme

4-i        A1

 

[1 mark]

a.i.

mean=124+i+4-i          A1

=4          AG

  

[1 mark]

a.ii.

METHOD 1

attempts product rule differentiation        (M1)

 

Note: Award (M1) for attempting to express fx as fx=x3-9x2+25x-17

 

f'x=x-12x-8+x2-8x+17  f'x=3x2-18x+25        A1

f'4=1        A1

 

Note: Where f'x is correct, award A1 for solving f'x=1 and obtaining x=4.


EITHER

y-3=1x-4        A1


OR

y=x+c

3=4+cc=-1        A1


OR

states the gradient of y=x-1 is also 1 and verifies that 4, 3 lies on the line y=x-1        A1


THEN

so y=x-1 is the tangent to the curve at A4, 3        AG

 

Note: Award a maximum of (M0)A0A1A1 to a candidate who does not attempt to find f'x.

 

METHOD 2

sets fx=x-1 to form x-1=x-1x2-8x+17        (M1)


EITHER

x-1x2-8x+16=0  x3-9x2+24x-16=0        A1

attempts to solve a correct cubic equation        (M1)

x-1x-42=0x=1, 4


OR

recognises that x1 and forms x2-8x+17=1  x2-8x+16=0        A1

attempts to solve a correct quadratic equation        (M1)

x-42=0x=4


THEN

x=4 is a double root        R1

so y=x-1 is the tangent to the curve at A4, 3        AG

 

Note: Candidates using this method are not required to verify that y=3.

  

[4 marks]

b.

a positive cubic with an  x-intercept x=1, and a local maximum and local minimum in the first quadrant both positioned to the left of A        A1

 

Note: As the local minimum and point A are very close to each other, condone graphs that seem to show these points coinciding.
For the point of tangency, accept labels such as A, 4,3 or the point labelled from both axes. Coordinates are not required.

 

a correct sketch of the tangent passing through A and crossing the x-axis at the same point x=1 as the curve        A1

 

Note: Award A1A0 if both graphs cross the x-axis at distinctly different points.

  

[2 marks]

c.

EITHER

g'x=x-r2x-2a+x2-2ax+a2+b2         (M1)A1


OR

gx=x3-2a+rx2+a2+b2+2arx-a2+b2r

attempts to find g'x        M1

g'x=3x2-22a+rx+a2+b2+2ar

=2x2-2a+rx+2ar+x2-2ax+a2+b2        A1

=2x2-ax-rx+ar+x2-2ax+a2+b2


THEN

g'x=2x-rx-a+x2-2ax+a2+b2        AG

  

[2 marks]

d.i.

METHOD 1

ga=b2a-r         (A1)

g'a=b2         (A1)

attempts to substitute their ga and g'a into y-ga=g'ax-a        M1

y-b2a-r=b2x-a


EITHER

y=b2x-r y=b2x-b2r        A1

sets y=0 so b2x-r=0        M1

b>0x=r OR b0x=r        R1


OR 

sets y=0 so -b2a-r=b2x-a        M1

b>0 OR b0-a-r=x-a        R1

x=r        A1

THEN

so the tangent intersects the x-axis at the point Rr, 0        AG

 

METHOD 2

g'a=b2         (A1)

ga=b2a-r         (A1)

attempts to substitute their ga and g'a into y=g'ax+c and attempts to find c        M1

c=-b2r


EITHER

y=b2x-r y=b2x-b2r        A1

sets y=0 so b2x-r=0        M1

b>0x=r OR b0x=r        R1


OR

sets y=0 so b2x-r=0        M1

b>0 OR b0x-r=0        R1

x=r        A1

 

METHOD 3

g'a=b2         (A1)

the line through Rr, 0 parallel to the tangent at A has equation
y=b2x-r        A1

sets gx=b2x-r to form b2x-r=x-rx2-2ax+a2+b2        M1

b2=x2-2ax+a2+b2, xr        A1

x-a2=0        A1

since there is a double root x=a, this parallel line through Rr, 0 is the required tangent at A        R1

 

[6 marks]

d.ii.

EITHER

g'a=b2b=g'a (since b>0)        R1


Note: Accept b=±g'a.


OR

a±bi=a±ib2 and g'a=b2        R1


THEN

hence the complex roots can be expressed as a±ig'a        AG

 

[1 mark]

e.

b=4 (seen anywhere)        A1


EITHER

attempts to find the gradient of the tangent in terms of a and equates to 16       (M1)


OR

substitutes r=-2, x=a  and  y=80 to form 80=a--2a2-2a2+a2+16       (M1)


OR

substitutes r=-2, x=a  and  y=80 into y=16x-r       (M1)


THEN

80a+2=16a=3

roots are -2 (seen anywhere) and 3±4i        A1A1

 

Note: Award A1 for -2 and A1 for 3±4i. Do not accept coordinates.

 

[4 marks]

f.i.

3, -4        A1

 

Note: Accept “x=3 and y=4”.
Do not award A1FT for (a, 4)

 

[1 mark]

f.ii.

g'x=2x-rx-a+x2-2ax+a2+b2

attempts to find g''x        M1

g''x=2x-a+2x-r+2x-2a =6x-2r-4a

sets g''x=0 and correctly solves for x        A1

for example, obtaining x-r+2x-a=0 leading to 3x=2a+r

so x=132a+r        AG


Note: Do not award A1 if the answer does not lead to the AG.

 

[2 marks]

g.i.

point P is 23 of the horizontal distance (way) from point R to point A       A1


Note: Accept equivalent numerical statements or a clearly labelled diagram displaying the numerical relationship.
Award A0 for non-numerical statements such as “P is between R and A, closer to A”.

 

[1 mark]

g.ii.

y=x-1x2-2x+5       (A1)

a positive cubic with no stationary points and a non-stationary point of inflexion at x=1       A1


Note: Graphs may appear approximately linear. Award this A1 if a change of concavity either side of x=1 is apparent.
Coordinates are not required and the y-intercept need not be indicated.

 

[2 marks]

h.i.

r, 0         A1

 

[1 mark]

h.ii.

Examiners report

Part (a) (i) was generally well done with a significant majority of candidates using the conjugate root theorem to state 4-i as the third root. A number of candidates, however, wasted considerable time attempting an algebraic method to determine the third root. Part (a) (ii) was reasonably well done. A few candidates however attempted to calculate the product of 4+i and 4-i.

Part (b) was reasonably well done by a significant number of candidates. Most were able to find a correct expression for f'(x) and a good number of those candidates were able to determine that f'(4)=1. Candidates that did not determine the equation of the tangent had to state that the gradient of y=x-1 is also 1 and verify that the point (4,3) lies on the line. A few candidates only met one of those requirements. Weaker candidates tended to only verify that the point (4,3) lies on the curve and the tangent line without attempting to find f'(x).

Part (c) was not answered as well as anticipated. A number of sketches were inaccurate and carelessly drawn with many showing both graphs crossing the x-axis at distinctly different points.

Part (d) (i) was reasonably well done by a good number of candidates. Most successful responses involved use of the product rule. A few candidates obtained full marks by firstly expanding g(x), then differentiating to find g'(x)and finally simplifying to obtain the desired result. A number of candidates made elementary mistakes when differentiating. In general, the better candidates offered reasonable attempts at showing the general result in part (d) (ii). A good number gained partial credit by determining that g'(a)=b2 and/or g(a)=b2(a-r). Only the very best candidates obtained full marks by concluding that as b>0 or b0, then x=r when y=0.

In general, only the best candidates were able to use the result g'(a)=b2 to deduce that the complex roots of the equation can be expressed as a±ig'(a). Although given the complex roots a±bi, a significant number of candidates attempted, with mixed success, to use the quadratic formula to solve the equation z2-2az+a2+b2=0.

In part (f) (i), only a small number of candidates were able to determine all the roots of the equation. Disappointingly, a large number did not state -2 as a root. Some candidates determined that b=4 but were unable to use the diagram to determine that a=3. Of the candidates who determined all the roots in part (f) (i), very few gave the correct coordinates for C2 . The most frequent error was to give the y-coordinate as 3-4i.

Of the candidates who attempted part (g) (i), most were able to find an expression for g''(x) and a reasonable number of these were then able to convincingly show that x=13(2a+r). It was very rare to see a correct response to part (g) (ii). A few candidates stated that P is between R and A with some stating that P was closer to A. A small number restated x=13(2a+r) in words.

Of the candidates who attempted part (h) (i), most were able to determine that y=(x-1)x2-2x+5. However, most graphs were poorly drawn with many showing a change in concavity at x=0 rather than at x=1. In part (h) (ii), only a very small number of candidates determined that A and P coincide at (r,0).

a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.
[N/A]
g.i.
[N/A]
g.ii.
[N/A]
h.i.
[N/A]
h.ii.



This question investigates some applications of differential equations to modeling population growth.

One model for population growth is to assume that the rate of change of the population is proportional to the population, i.e.  d P d t = k P , where  k R , t is the time (in years) and P is the population

The initial population is 1000.

Given that k = 0.003 , use your answer from part (a) to find

Consider now the situation when k is not a constant, but a function of time.

Given that  k = 0.003 + 0.002 t , find

Another model for population growth assumes

Show that the general solution of this differential equation is  P = A e k t , where A R .

[5]
a.

the population after 10 years

[2]
b.i.

the number of years it will take for the population to triple.

[2]
b.ii.

lim t P

[1]
b.iii.

the solution of the differential equation, giving your answer in the form P = f ( t ) .

[5]
c.i.

the number of years it will take for the population to triple.

[4]
c.ii.

Show that  d P d t = m L P ( L P ) , where m R .

[2]
d.

Solve the differential equation d P d t = m L P ( L P ) , giving your answer in the form P = g ( t ) .

[10]
e.

Given that the initial population is 1000, L = 10000   and m = 0.003 , find the number of years it will take for the population to triple.

[4]
f.

Markscheme

1 P d P = k d t         M1A1

ln P = k t + c          A1A1

P = e k t + c          A1

P = A e k t , where  A = e c          AG

[5 marks]

a.

when  t = 0 , P = 1000

A = 1000          A1

P ( 10 ) = 1000 e 0.003 ( 10 ) = 1030          A1

[2 marks]

b.i.

3000 = 1000 e 0.003 t         M1

t = ln 3 0.003 = 366 years        A1

[2 marks]

b.ii.

lim t P =        A1

[1 mark]

b.iii.

1 P d P = ( 0.003 + 0.002 t ) d t         M1

ln P = 0.003 t + 0.001 t 2 + c         A1A1

P = e 0.003 t + 0.001 t 2 + c         A1

when  t = 0 , P = 1000

e c = 1000         M1

P = 1000 e 0.003 t + 0.001 t 2

[5 marks]

c.i.

3000 = 1000 e 0.003 t + 0.001 t 2         M1

ln 3 = 0.003 t + 0.001 t 2         A1

Use of quadratic formula or GDC graph or GDC polysmlt        M1

t = 31.7 years         A1

[4 marks]

c.ii.

k = m ( 1 P L ) , where m  is the constant of proportionality        A1

So d P d t = m ( 1 P L ) P         A1

d P d t = m L P ( L P )         AG

[2 marks]

d.

1 P ( L P ) d P = m L d t         M1

1 P ( L P ) = A P + B L P         M1

1 A ( L P ) + B P         A1

A = 1 L , B = 1 L         A1

1 L ( 1 P + 1 L P ) d P = m L d t

1 L ( ln P ln ( L P ) ) = m L t + c         A1A1

ln ( P L P ) = m t + d , where  d = c L         M1

P L P = C e m t , where  C = e d         A1

P ( 1 + C e m t ) = C L e m t         M1

P = C L e m t ( 1 + C e m t )   ( = L ( D e m t + 1 ) , where D = 1 C )         A1

[10 marks]

e.

1000 = 10000 D + 1         M1

D = 9         A1

3000 = 10000 9 e 0.003 t + 1         M1

t = 450 years        A1

[4 marks]

f.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.
[N/A]
f.



In parts (b) and (c),  ( a b c ) n  denotes the number  a b c  written in base n , where  n Z + . For example,  ( 359 ) n = 3 n 2 + 5 n + 9 .

State Fermat’s little theorem.

[2]
a.i.

Find the remainder when  15 1207 is divided by  13 .

[5]
a.ii.

Convert  ( 7 A 2 ) 16 to base 5 , where  ( A ) 16 = ( 10 ) 10 .

[4]
b.

Consider the equation ( 1251 ) n + ( 30 ) n = ( 504 ) n + ( 504 ) n .

Find the value of n .

[4]
c.

Markscheme

EITHER

a p a ( mod p )          A1

where p is prime         A1

 

OR

a p 1 1 ( mod p )          A1

where p is prime and p does not divide a (or equivalent statement)         A1

 

[2 marks]

a.i.

15 1207 2 1207 ( mod 13 )

2 12 1 ( mod 13 )         (M1)(A1)

2 1207 = ( 2 12 ) 100 2 7         (M1)

2 1207 ( 2 7 ) 11 ( mod 13 )         (M1)A1

the remainder is 11

Note: Award as above for using 15 instead of 2 .

[5 marks]

a.ii.

( 7 A 2 ) 16 = 7 × 16 2 + 10 × 16 + 2            M1

= 1954          A1

EITHER

5 | 1954 _

        390 r 4

          78 r 0

          15 r 3            M1

            3 r 0

            0 r 3

OR

1954 = 3 × 5 4 + 0 × 5 3 + 3 × 5 2 + 0 × 5 1 + 4            M1

THEN

( 7 A 2 ) 16 = ( 30304 ) 5          A1

 

[4 marks]

b.

the equation can be written as

n 3 + 2 n 2 + 5 n + 1 + 3 n = 2 ( 5 n 2 + 4 )            M1A1

n 3 8 n 2 + 8 n 7 = 0            (M1)

Note: The (M1) is for an attempt to solve the original equation.

n = 7          A1

[4 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.



Write down the remainder when 142022 is divided by 7.

[1]
a.i.

Use Fermat’s little theorem to find the remainder when 142022 is divided by 17.

[4]
a.ii.

Prove that a number in base 13 is divisible by 6 if, and only if, the sum of its digits is divisible by 6.

[4]
b.i.

The base 13 number 1y93y25 is divisible by 6. Find the possible values of the digit y.

[4]
b.ii.

Markscheme

the remainder is 0       A1


[1 mark]

a.i.

14161mod17  (from Fermat’s little theorem)        (A1)

142022=1416×126+6        (M1)


Note: Award M1 for a RHS exponent consistent with the correct use of Fermat’s little theorem.


142022146mod17  15mod17       A1

the remainder is 15       A1


[4 marks]

a.ii.

METHOD 1

let N=an13n+an-113n-1++a113+a0       M1


Note: The above M1 is independent of the A marks below.


131mod6       A1


EITHER

13x1mod6  (for all x)       A1


OR

Nan1n+an-11n-1++a11+a0mod6  Nan+an-1++a1+a0mod6       A1


THEN

so N0mod6 if and only if an+an-1++a1+a00mod6       R1

so 6N if and only if 6an+an-1++a1+a0       AG

 

METHOD 2

let N=an13n+an-113n-1++a113+a0       (M1)

N=an+an-1++a1+a0+13-1an13n-1++130+an-113n-2++130++a1130       M1A1


Note: Award M1 for attempting to express N in the form N=an+an-1++a1+a0+13-1M.


as 613-1M       R1

so 6N if and only if 6an+an-1++a1+a0       AG


[4 marks]

b.i.

METHOD 1

the sum of the digits is 2y+20       (A1)

uses 2y+20=6k  (or equivalent) to attempt to find a valid value of y       (M1)

y=2,5,8,11B       A1A1


Note: Award A1 for y=2,5,8 and A1 for y=11(B).

 

METHOD 2

1y93y2513=1×136+y×135+9×134+3×133+y×132+2×131+5×130       (A1)

=371462y+5090480

attempts to find a valid value of y such that

371462y+50904800mod6       (M1)

y=2,5,8,11B       A1A1


Note: Award A1 for y=2,5,8 and A1 for y=11(B).


[4 marks]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.